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Abstract. These notes cover two presentations:
(1) A general overview and introduction to the field.
(2) Parameterized intractability and complexity classes.

1 Introduction to Parameterized Complexity

1.1 Two Forms of Fixed-Parameter Complexity

Many natural computational problems are defined on input consisting of various
information, for example, many graph problems are defined as having input
consisting of a graph G = (V, E) and a positive integer k. Consider the following
well-known problems:
Vertex Cover
Input: A graph G = (V, E) and a positive integer k.
Question: Does G have a vertex cover of size at most k? (A vertex cover is a set
of vertices V ′ ⊆ V such that for every edge uv ∈ E, u ∈ V ′ or v ∈ V ′ (or both).)

Dominating Set
Input: A graph G = (V, E) and a positive integer k.
Question: Does G have a dominating set of size at most k? (A dominating set is
a set of vertices V ′ ⊆ V such that ∀u ∈ V : u ∈ N [v] for some v ∈ V ′.)

Although both problems are NP-complete, the input parameter k contributes
to the complexity of these two problems in two qualitatively different ways.

1. There is a simple bounded search tree algorithm for Vertex Cover that
runs in time O(2kn)

2. The best known algorithm for Dominating Set is basically just the brute
force algorithm of trying all k-subsets. For a graph on n vertices this approach
has a running time of O(nk+1).

(Easy) Exercise: What is the search tree algorithm for Vertex Cover refered
to above?

The table below shows the contrast between these two kinds of complexity.
In these two example problems, the parameter is the size of the solution being

sought. But a parameter that affects the compexity of a problem can be many
things.



n = 50 n = 100 n = 150

k = 2 625 2,500 5,625

k = 3 15,625 125,000 421,875

k = 5 390,625 6,250,000 31,640,625

k = 10 1.9 × 1012 9.8 × 1014 3.7 × 1016

k = 20 1.8 × 1026 9.5 × 1031 2.1 × 1035

Table 1. The Ratio nk+1

2kn
for Various Values of n and k.

Example. The nesting depth of a logical expression. ML is a logic-based pro-
gramming language for which relatively efficient compilers exist. One of the
problems the compiler must solve is the checking of the compatibility of type
declarations. This problem is known to be complete for EXP (deterministic expo-
nential time) [HM91], so the situation appears discouraging from the standpoint
of classical complexity theory. However, the implementations work well in prac-
tice because the ML Type Checking problem is FPT with a running time of
O(2kn), where n is the size of the program and k is the maximum nesting depth
of the type declarations [LP85]. Since normally k ≤ 5, the algorithm is clearly
practical on the natural input distribution.

The parameter can be size of the solution, or some structural aspect of the
natural input distribution — and many other things (to be discussed below).

In the favorable situations (as for Vertex Cover and Type Checking in
ML), the exponential cost of solving the problem (that is expected, since the
problems are NP-hard) can be entirely confined to an exponential function of
the parameter, with the overall input size n contributing polynomially.

1.2 Clashes of Function Classes; Multivariate Complexity and
Algorithmics

The familiar “P versus NP” framework, that we call the classical framework,
is fundamentally centered on the notion of polynomial time, and this is a one-
dimensional framework: there is one measurement (or variable) at work, the
overall input size n.

The classical framework revolves around a contrast between two function
classes: the good class of running times of algorithms of the form: O(nc), time
that is polynomial in the one measurement n. The bad class of run times is
those of the form 2nc

, and the drama concerns methods for establishing that
concrete problems admit good algorithms (and if so, maybe better algorithms?),
the positive toolkit, or if they only admit bad algorithms (modulo reasonable
conjectures), the negative toolkit that in the classical case is about NP-hardness,
EXP-hardness, etc.

Worth noting at this point is that one of the main motivations to parameter-
ized complexity (and many other approaches) is that while the classical theory
is beautiful, and a handful of important problems are in P, the vast majority of
problems have turned out to be NP-hard or worse.
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Parameterized complexity is basically a two-dimensional sequel, based sim-
ilarly on a contrast between two function classes in a two-dimensional setting,
where in addition to the overall input size n, we have a second measurement
(or variable) that captures something else significant that affects computational
complexity (and the opportunities for efficient algorithm design), the parameter
k (that might be solution size, or something structural about typical inputs, ...
or many other things).

How do we formalize this?

Definition 1. A parameterized language L is a subset L ⊆ Σ∗ × Σ∗. If L is a
parameterized language and (x, k) ∈ L then we will refer to x as the main part,
and refer to k as the parameter.

A parameter may be non-numerical, and it can also represent an aggregate
of various parts or structural properties of the input.

Definition 2. A parameterized language L is multiplicatively fixed-parameter
tractable if it can be determined in time f(k)q(n) whether (x, k) ∈ L, where
|x| = n, q(n) is a polynomial in n, and f is a function (unrestricted).

Definition 3. A parameterized language L is additively fixed-parameter tractable
if it can be determined in time f(k) + q(n) whether (x, k) ∈ L, where |x| = n,
q(n) is a polynomial in n, and f is a function (unrestricted).

(Easy) Exercise. Show that a parameterized language is additively fixed-
parameter tractable if and only if it is multiplicatively fixed-parameter tractable.
This emphasizes how cleanly fixed-parameter tractability isolates the computa-
tional difficulty in the complexity contribution of the parameter.

The following definition provides us with a place to put all those problems
that are “solvable in polynomial time for fixed k” without making the central
distinction about whether this “fixed k” is ending up in the exponent or not (as
with the brute force algorithm for Dominating Set).

Definition 4. A parameterized language L belongs to the class XP if it can be
determined in time f(k)ng(k) whether (x, k) ∈ L, where |x| = n, with f and g
being unrestricted functions.

Is it possible that FPT = XP ? This is one of the few structural questions
concerning parameterized complexity that currently has an answer [DF98].

Theorem 1. FPT is a proper subset of XP.

Summarizing the main point: parameterized complexity is about a natural
bivariate generalization of the P versus NP drama. This inevitably leads to two
toolkits: the positive toolkit of FPT methods (that Daniel Marx will lecture
about), and the negative toolkit that basically provides a parameterized analog
of Cook’s Theorem, and methods for showing when fixed-parameter tractable
algorithms for parameterized problems are not possible (modulo reasonable as-
sumptions).

There is a larger context captured by the reasonable question that is often
asked:
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If Parameterized Complexity is the natural two-dimensional sequel to P
versus NP, then what is the three-dimensional sequel?

Nobody currently knows the answer. Ideally, one would like to have a fully
multivariate perspective on complexity analysis and algorithm design that meets
the following criteria:
• In dimension 1, you get the (basic) P versus NP drama.
• In dimension 2, you get the (productive) FPT versus XP drama.
• In all dimensions, you have concrete problems where the contrasting outcomes
are natural and consequential, and the theory is routinely doable.

Open research problem. Is there such a fully multivariate mathematical
perspective?

Introducing (at least one) secondary variable k beyond the overall input size
n allows us to ask many new and interesting questions that cannot be asked
in any mathematically natural way in the classical framework. Much of this
interesting traction is based on the various ways that parameterization can be
deployed.

1.3 Parameters Can Be Many Things

There are many ways that parameters arise naturally, for example:
• The size of a database query. Normally the size of the database is huge, but
frequently queries are small. If n is the size of a relational database, and k is the
size of the query, then answering the query (Model Checking) can be solved
trivially in time O(nk). It is known that this problem is unlikely to be FPT
[DFT96,PY97] because it is hard for W [1], the parameterized analog of NP-
hardness. However, if the parameter is the size of the query and the treewidth
of the database, then the problem is fixed-parameter tractable [Gr01b].
• The number of species in an evolutionary tree. Frequently this parameter is
in a range of k ≤ 50. The PHYLIP computational biology server includes an
algorithm which solves the Steiner Problem in Hypercubes in order to
compute possible evolutionary trees based on (binary) character information.
The exponential heuristic algorithm that is used is in fact an FPT algorithm
when the parameter is the number of species.
• The number of variables or clauses in a logical formula, or the number of
steps in a deductive procedure. Determining whether at least k clauses of a CNF
formula F are satisfiable is FPT with a running time of O(|F |+1.381kk2) [BR99].
Since at least half of the m clauses of F can always be satisfied, a more natural
parameterization is to ask if at least m/2 + k clauses can be satisfied — this is
FPT with a running time of O(|F |+ 6.92kk2) [BR99]. Implementations indicate
that these algorithms are quite practical [GN00].
• The number of moves in a game, or the number of steps in a planning problem.
While most game problems are PSPACE-complete classically, it is known that
some are FPT and others are likely not to be FPT (because they are hard
for W [1]), when parameterized by the number of moves of a winning strategy
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[ADF95]. The size n of the input game description usually governs the number
of possible moves at any step, so there is a trivial O(nk) algorithm that just
examines the k-step game trees exhaustively.

• The number of facilities to be located. Determining whether a planar graph
has a dominating set of size at most k is fixed-parameter tractable by an algo-
rithm with a running time of O(8kn) based on kernelization and search trees.
By different methods, an FPT running time of O(336

√
k)n can also be proved.

• An unrelated parameter. The input to a problem might come with “extra
information” because of the way the input arises. For example, we might be
presented with an input graph G together with a k-vertex dominating set in G,
and be required to compute an optimal bandwidth layout. Whether this problem
is FPT is open.

• The amount of “dirt” in the input or output for a problem. In the Maximum
Agreement Subtree (MAST) problem we are presented with a collection
of evolutionary trees trees for a set X of species. These might be obtained by
studying different gene families, for example. Because of errors in the data, the
trees might not be isomorphic, and the problem is to compute the largest possible
subtree on which they do agree. Parameterized by the number of species that
need to be deleted to achieve agreement, the MAST problem is FPT by an
algorithm having a running time of O(2.27k + rn3) where r is the number of
trees and n is the number of species [NR01].

• The “robustness” of a solution to a problem, or the distance to a solution.
For example, given a solution of the Minimum Spanning Tree problem in an
edge-weighted graph, we can ask if the cost of the solution is robust under all
increases in the edge costs, where the parameter is the total amount of cost
increases.

• The distance to an improved solution. Local search is a mainstay of heuristic
algorithm design. The basic idea is that one maintains a current solution, and
iterates the process of moving to a neighboring “better” solution. A neighboring
solution is usually defined as one that is a single step away according to some
small edit operation between solutions. The following problem is completely
general for these situations, and could potentially provide a valuable subroutine
for “speeding up” local search:

k-Speed Up for Local Search
Input: A solution S, k.
Parameter: k
Output: The best solution S′ that is within k edit operations of S.

• The goodness of an approximation. If we consider the problem of producing
solutions whose value is within a factor of (1 + ε) of optimal, then we are imme-
diately confronted with a natural parameter k = 1/ε. Many of the recent PTAS
results for various problems have running times with 1/ε in the exponent of the
polynomial. Since polynomial exponents larger than 3 are not practical, this is
a crucial parameter to consider.
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It is obvious that the practical world is full of concrete problems governed
by parameters of all kinds that are bounded in small or moderate ranges. If we
can design algorithms with running times like 2kn for these problems, then we
may have something really useful.

1.4 Kernelization: Another View of FPT

Preprocessing is a practical computing strategy with a lot of power on real world
input distributions, as shown by the following example.
Example: Weihe’s Train Problem

Weihe describes a problem concerning the train systems of Europe [Wei98].
Consider a bipartite graph G = (V, E) where V is bipartitioned into two sets S
(stations) and T (trains), and where an edge represents that a train t stops at
a station s. The relevant graphs are huge, on the order of 10,000 vertices. The
problem is to compute a minimum number of stations S′ ⊆ S such that every
train stops at a station in S′. This is a special case of the Hitting Set problem,
and is therefore NP-complete.

However, the following two reduction rules can be applied to simplify (pre-
process) the input to the problem. In describing these rules, let N (s) denote the
set of trains that stop at station s, and let N (t) denote the set of stations at
which the train t stops.

1. If N (s) ⊆ N (s′) then delete s.
2. If N (t) ⊆ N (t′) then delete t′.

Applications of these reduction rules cascade, preserving at each step enough
information to obtain an optimal solution. Weihe found that, remarkably, these
two simple reduction rules were strong enough to “digest” the original, huge
input graph into a problem kernel consisting of disjoint components of size at
most 50 — small enough to allow the problem to be solved optimally by brute
force.

The following is an equivalent definition of FPT [DFS99].

Definition 5. A parameterized language L is kernelizable if there is there is a
parameterized transformation of L to itself, and a function g (unrestricted) that
satisfies:

1. the running time of the transformation of (x, k) into (x′, k′), where |x| = n,
is bounded by a polynomial q(n, k) (so that in fact this is a polynomial-
time transformation of L to itself, considered classically, although with the
additional structure of a parameterized reduction),

2. k′ ≤ k, and
3. |x′| ≤ g(k).

Lemma 1. A parameterized language L is fixed-parameter tractable if and only
if it is kernelizable.
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The proof of this is essentially the solution to the second exercise above.
The kernelization point of view about FPT has become a major enterprise

all in itself, that will be covered in the lecture by Saket Saurabh.
There are several points to be noted about kernelization that lead to impor-

tant research directions:

(1) Kernelization rules are frequently surprising in character, laborious to prove,
and nontrivial to discover. Once found, they are small gems of data reduction
that remain permanently in the heuristic design file for hard problems. No one
concerned with any application of Hitting Set on real data should henceforth
neglect Weihe’s data reduction rules for this problem. The kernelization for Ver-
tex Cover to graphs of minimum degree 4, for another example, includes the
following nontrivial transformation [DFS99]. Suppose G has a vertex x of degree
3 that has three mutually nonadjacent neighbors a, b, c. Then G can be simpli-
fied by: (1) deleting x, (2) adding edges from c to all the vertices in N (a), (3)
adding edges from a to all the vertices in N (b), (3) adding edges from b to all
the vertices in N (c), and (4) adding the edges ab and bc. Note that this trans-
formation is not even symmetric! The resulting (smaller) graph G′ has a vertex
cover of size k if and only if G has a vertex cover of size k. Moreover, an optimal
or good approximate solution for G′ lifts constructively to an optimal or good
approximate solution for G. The research direction this points to is to discover
these gems of smart preprocessing for all of the hard problems. There
is absolutely nothing to be lost in smart pre-processing, no matter what the
subsequent phases of the algorithm (even if the next phase is genetic algorithms
or simulated annealing).

(2) Kernelization rules cascade in ways that are surprising, unpredictable in ad-
vance, and often quite powerful. Finding a rich set of reduction rules for a hard
problem may allow the synergistic cascading of the pre-processing rules to “wrap
around” hidden structural aspects of real input distributions. Weihe’s train prob-
lem provides an excellent example. According to the experience of Alber, Gramm
and Niedermeier with implementations of kernelization-based FPT algorithms
[AGN01], the effort to kernelize is amply rewarded by the subsequently expo-
nentially smaller search tree.

(3) Kernelization is an intrinsically robust algorithmic strategy. Frequently we
design algorithms for “pure” combinatorial problems that are not quite like that
in practice, because the modeling is only approximate, the inputs are “dirty”,
etc. For example, what becomes of our Vertex Cover algorithm if a limited
number of edges uv in the graph are special, in that it is forbidden to include
both u and v in the vertex cover? Because they are local in character, the usual
kernelization rules are easily adapted to this situation.

(4) Kernelization rules normally preserve all of the information necessary for op-
timal or approximate solutions. For example, Weihe’s kernelization rules for the
train problem (Hitting Set) transform the original instance G into a problem
kernel G′ that can be solved optimally, and the optimal solution for G′ “lifts”
to an optimal solution for G.
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The importance of pre-processing in heuristic design is not a new idea.
Cheeseman et al. have previously pointed to its importance in the context of
artificial intelligence algorithms [CKT91]. What parameterized complexity con-
tributes is a richer theoretical context for this basic element of practical algo-
rithm design. Further research directions include potential methods for mecha-
nizing the discovery and/or verification of reduction rules, and data structures
and implementation strategies for efficient kernelization pre-processing.

Lemma 1 of §3 tells us that a parameterized problem is fixed-parameter
tractable if and only if there is a polynomial-time kernelization algorithm trans-
forming the input (x, k) into (x′, k′) where k′ ≤ k and |x′| ≤ g(k′) for some
function g special to the problem. The basic schema is that reduction rules are
applied until an irreducible instance (x′, k′) is obtained. At this point a Kernel
Lemma is invoked to decide all those reduced instances x′ that are larger than
g(k′) for the kernel-bounding function g. For example, in the cases of Vertex
Cover and Planar Dominating Set, if a reduced graph G′ is larger than
g(k′) then (G′, k′) is a no-instance. In the case of Max Leaf Spanning Tree
large reduced instances are automatically yes-instances. (It is notable that for all
three of these problems linear kernelization, g(k) = O(k), has been established,
in all cases nontrivially [CKJ99,FMcRS01,AFN02].)

How does one proceed to discover an adequate set of reduction
rules, or elucidate (and prove) a bounding function g(k) that
insures for instances larger than this bound, that the question
can be answered directly?

We illustrate a systematic approach with the Max Leaf Spanning Tree
problem. Our objective is to prove:
The Kernel Lemma. If (G = (V, E), k) is a reduced instance of Max Leaf
Spanning Tree and G has more than g(k) vertices, then (G, k) is a yes-instance.

We will prove the Kernel Lemma as a corollary to the following.
The Boundary Lemma. If G = (V, E) is a reduced instance of Max Leaf
Spanning Tree that is a yes-instance for k and a no-instance for k + 1, then
G has at most h(k) vertices.

Let us first verify that the Kernel Lemma follows from the Boundary Lemma.
We will make the mild assumption that our functions g(k) and h(k) are nonde-
creasing. Take g(k) = h(k). Suppose (G, k) is a counterexample to the Kernel
Lemma. Then G is reduced, and has more than h(k) vertices, but is a no-instance,
that is, G does not have a spanning tree with at least k leaves. Let k′ < k be the
maximum number of leaves in a spanning tree of G. Then G is a yes-instance
for k′ and a no-instance for k′ + 1. Since k′ < k and h is non-decreasing, G has
more than h(k′) vertices, but this contradicts the Boundary Lemma.

The form of the Boundary Lemma ( ... which still needs to be proved, and we
still need to discover what we mean by “reduced”, and we also need to identify
the particular bounding function h ... ) is conducive to an extremal theorem
style of argument based on a list of inductive priorities. The proof is sketched as
follows.
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Sketch Proof of the Boundary Lemma. The proof is by minimum coun-
terexample. If there is any counterexample, then we can take G to be one that
satisfies:
(1) G is reduced.
(2) G is connected and has more than h(k) vertices.
(3) G is a no-instance for k + 1.
(4) G is a yes-instance for k, as witnessed by an t-rooted tree subgraph T of G
that has k leaves. (We do not assume that T is spanning. Note that if T has k
leaves then it can be extended to a spanning tree with at least as many leaves.)
(5) G is a counterexample where T has a minimum possible number of vertices.
(6) Among all of the G, T satisfying (1-5), T has a maximum possible number
of internal vertices that are adjacent to a leaf of T .
(7) Among all of the G, T satisfying (1-6), the quantity

∑
l∈L d(t, l) is minimized,

where L is the set of leaves of T and d(t, l) is the distance in T to the “root”
vertex t.
Then we argue for a contradiction.
Comment. The point of all this is to set up a framework for argument that will
allow us to see what reduction rules are needed, and what g(k) can be achieved.
In essence we are setting up a (possibly elaborate, in the spirit of extremal graph
theory) argument by minimum counterexample — and using this as a discovery
process for the FPT algorithm design. The witness structure T of condition (4)
gives us a way of “coordinatizing” the situation — giving us some structure to
work with in our inductive argument. How this strucuture is used will become
clear as we proceed.

We refer to the vertices of V −T as outsiders. The following structural claims
are easily established. The first five claims are enforced by condition (3), that
is, if any of these conditions did not hold, then we could extend T to a tree T ′

having one more leaf.
Claim 1: No outsider is adjacent to an internal vertex of T .
Claim 2: No leaf of T can be adjacent to two outsiders.
Claim 3: No outsider has three or more outsider neighbors.
Claim 4: No outsider with 2 outsider neighbors is connected to a leaf of T .
Claim 5: The graph induced by the outsider vertices has no cycles.
It follows from Claims (1-5) that the subgraph induced by the outsiders consists
of a collection of paths, where the internal vertices of the paths have degree 2 in
G. Since we are ultimately attempting to bound the size of G, this suggests (as
a discovery process) the following reduction rule for kernelization.
Kernelization Rule 1: If (G, k) has two adjacent vertices u and v of degree 2,
then:
(Rule 1.1) If uv is a bridge, then contract uv to obtain G′ and let k′ = k.
(Rule 1.2) If uv is not a bridge, then delete the edge uv to obtain G′ and let
k′ = k.
The soundness of this reduction rule is not completely obvious, although not
difficult. Having now partly clarified condition (1), we can continue the argument.
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The components of the subgraph induced by the outsiders must consist of paths
having either 1,2 or 3 vertices.

Because we are trying to efficiently bound the total number of outsiders (as
well as everything else, eventually, in order to obtain the best possible kernel-
ization bound h(k)), the situation suggests we should look for further reduction
rules to address the remaining possible situations with respect to the outsiders.
This discovery process leads us to the following further kernelization rules.
Kernelization Rule 2: If (G, k) is a (connected) instance of Max Leaf where G
has a vertex u of degree 1, with neighbor v, and where ∃x /∈ N (v) (that is, not
every vertex of G is a neighbor of v), then transform (G, k) into (G′, k′), where
k = k′ and G′ is obtained by:
(1) deleting u, and
(2) adding edges to make N [v] into a clique.

The reader can verify that this rule is sound: (G, k) is a yes-instance if and
only if (G′, k′) is a yes-instance.
Kernelization Rule 3: If (G, k) is a (connected) instance of Max Leaf where G
has two vertices u and v such that either:
(1) u and v are adjacent, and N [u] = N [v], or
(2) u and v are not adjacent, and N (u) = N (v),
and also (in either case) there is at least one vertex of G not in N [u]∪N [v], then
transform (G, k) to (G′, k′) where k′ = k − 1 and G′ is obtained by deleting u.

Returning to our consideration of the outsiders, we are now in the situation
that for a reduced graph, the only possibilities are:
(1) A component of the outsider graph is a single vertex having at least 2 leaf
neighbors in T .
(2) A component of the outsider graph is a K2 having at least three leaf neighbors
in T .
(3) A component of the outsider is a path of three vertices P3 having at least
four leaf neighbors in T .
The weakest of the ratios is given by case (3). We can conclude that the number
of outsiders is bounded by 3k/4.
The next step is to study the tree T . Since it has k leaves, it has at most k − 2
branch vertices. Using conditions (5) and (6), but omitting the details, it is
argued that: (1) the paths in T between a leaf and its parental branch vertex
has no subdivisions, and (2) any other path in T between branch vertices has
at most 3 subdivisions (with respect to T ). These statements are proved by
various further structural claims (as in the analysis of the outsider population)
that must hold, else one of the inductive priorities would fail (constructively) —
a tree with k + 1 leaves would be possible, or a smaller T , or a T with more
internal vertices adjacent to leaves can be devised, or one with a better score
on the sum-of-distances priority (7). Consequently T has at most 5k vertices,
unless there is a contradiction. Together with the bound on the outsiders in a
reduced graph, this yields a g(k) of 5.75k. ut

The above sketch illustrates how the project of proving an FPT kernelization
bound is integrated with the search for efficient kernelization rules. But there is
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more to the story. The argument above also leads directly to a constant-factor
polynomial-time approximation algorithm in the following way. First, reduce G
using the kernelization rules. It is easy to verify that the rules are approximation-
preserving. Thus, we might as well suppose that G is reduced to begin with. Now
take any tree T (not necessarily spanning) in G. If all of the structural claims
hold, then (by our arguments above) the tree T must have at least n/c leaves for
c = 5.75, and therefore we already have (trivially) a c-approximation. (It would
require further arguments, but probably the approximation factor is much better
than c.) If at least one of the structural claims does not hold, then the tree T
can be improved against one of the inductive priorities. Notice that each claim
is proved (in the kernelization argument above) by a constructive consequence.
For example, if Claim 1 did not hold, then we can find a tree T ′ (by modifying
T ) that has one more leaf. Similarly, each claim violation yields a constructive
consequence against one of the inductive priorities in the extremal argument for
the kernelization bound. These consequences can be applied to our original T
(and its successors) only a polynomial number of times (determined by the list
of inductive priorities) until we arrive at a tree T ′ for which all of the various
structural claims hold. At that point, we must have a c-approximate solution.

2 Parameterized Intractability and Structural
Complexity

Is there a parameterized analog of Cook’s Theorem? Yes there is!

2.1 Various Forms of The Halting Problem: A Central Reference
Point

The main investigations of computability and efficient computability are tied to
three basic forms of the Halting Problem.

1. The Halting Problem
Input: A Turing machine M .
Question: If M is started on an empty input tape, will it ever halt?

2. The Polynomial-Time Halting Problem for Nondeterministic
Turing Machines
Input: A nondeterministic Turing machine M .
Question: Is it possible for M to reach a halting state in n steps, where n is
the length of the description of M?

3. The k-Step Halting Problem for Nondeterministic Turing Ma-
chines
Input: A nondeterministic Turing machine M and a positive integer k. (The
number of transitions that might be made at any step of the computation is
unbounded, and the alphabet size is also unrestricted.)
Parameter: k
Question: Is it possible for M to reach a halting state in at most k steps?
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The first form of the Halting Problem is useful for studying the question:

“Is there ANY algorithm for my problem?”

The second form of the Halting Problem has proved useful for nearly 30
years in addressing the question:

“Is there an algorithm for my problem ... like the ones for
Sorting and Matrix Multiplication?”

The second form of the Halting Problem is trivially NP-complete, and es-
sentially defines the complexity class NP. For a concrete example of why it is
trivially NP-complete, consider the 3-Coloring problem for graphs, and no-
tice how easily it reduces to the P -Time NDTM Halting Problem. Given a
graph G for which 3-colorability is to be determined, we just create the following
nondeterministic algorithm:
Phase 1. (There are n lines of code here if G has n vertices.)
(1.1) Color vertex 1 one of the three colors nondeterministically.
(1.2) Color vertex 2 one of the three colors nondeterministically.
...

(1.n) Color vertex n one of the three colors nondeterministically.
Phase 2. Check to see if the coloring is proper and if so halt. Otherwise go into
an infinite loop.

It is easy to see that the above nondeterministic algorithm has the possibility
of halting in m steps (for a suitably padded Turing machine description of size
m) if and only if the graph G admits a 3-coloring. Reducing any other problem
Π ∈ NP to the P -Time NDTM Halting Problem is no more difficult than
taking an argument that the problem Π belongs to NP and modifying it slightly
to be a reduction to this form of the Halting Problem. It is in this sense that
the P -Time NDTM Halting Problem is essentially the defining problem for
NP .

The conjecture that P 6= NP is intuitively well-founded. The second form of
the Halting Problem would seem to require exponential time because there is
little we can do to analyze unstructured nondeterminism other than to exhaus-
tively explore the possible computation paths.

When the question is:

“Is there an algorithm for my problem ... like the one for Vertex
Cover?”

the third form of the Halting Problem anchors the discussion.
The third natural form of the Halting Problem is trivially solvable in time

O(nk) by exploring the n-branching, depth-k tree of possible computation paths
exhaustively. Our intuition here is essentially the same as for the second form
of the Halting Problem — that this cannot be improved. The third form of the
Halting Problem defines the parameterized complexity class W [1]. Thus W [1] is
strongly analogous to NP, and the conjecture that FPT 6= W [1] stands on much
the same intuitive grounds as the conjecture that P 6= NP . The appropriate
notion of problem reduction is as follows.
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Definition 6. A parametric transformation from a parameterized language L to
a parameterized language L′ is an algorithm that computes from input consisting
of a pair (x, k), a pair (x′, k′) such that:

1. (x, k) ∈ L if and only if (x′, k′) ∈ L′,
2. k′ = g(k) is a function only of k, and
3. the computation is accomplished in time f(k)nα, where n = |x|, α is a con-

stant independent of both n and k, and f is an arbitrary function.

Hardness for W [1] is the working criterion that a parameterized problem
is unlikely to be FPT. The k-Clique problem is W [1]-complete [DF98], and
often provides a convenient starting point for W [1]-hardness demonstrations.
This is the parameterized analog of Cook’s Theorem, that the third form of the
Halting Problem is FPT if and only if the k-Clique problem is FPT.

The main classes of parameterized problems are organized in the tower

P ⊆ lin(k) ⊆ poly(k) ⊆ FPT ⊆ M [1] ⊆ W [1] ⊆ M [2] ⊆ W [2] ⊆ · · ·W [P ] ⊆ XP

2.2 The W[t] Classes

Loosely speaking, the W-hierarchy captures the complexity of the quest for small
solutions for constant depth circuits by stepwise increasing the allowed weft. The
weft of a circuit is the maximum number of large gates (of unbounded fan-in)
on any input-output path of the circuit. More precisely, W[t] is characterized by
the complete problem asking for satisfying assignments of (Hamming-)weight k
for constant depth circuits of weft t. Here k is the parameter.

Historically, the W [t]-hierarchy was inspired by the observation that the pa-
rameterized reduction of Clique to the k-weighted satisfiability problem for
circuits produces circuits of weft 1 (and depth 2), while the reduction for Dom-
inating Set produces circuits of weft 2, and yet there seems to be no parame-
terized reduction from Dominating Set to Clique.

Let Γ be a set of circuits. The k-weighted satisfiability problem of Γ is the
problem WSat(Γ ):

Instance: A circuit C ∈ Γ and a natural k.
Parameter: k.
Problem: Is there an assignment of weight k satisfying C?

Here the weight of an assignment is the number of variables that it maps to 1.
W[t] contains all and only the parameterized problems that are for some d

fpt reducible to the weighted circuit satisfiability problem WSat(Ωt,d) where
Ωt,d is the set of Boolean circuits of weft t and depth at most d. W[P] is defined
similarly by WSat(Circ) where Circ is the set of Boolean circuits.

13



2.3 The M[t] Classes

There is an important class of parameterized problems seemingly intermediate
between FPT and W [1]:

FPT ⊆ M [1] ⊆ W [1]

There are two natural “routes” to M [1].
The renormalization route to M [1].
There are O∗(2O(k)) FPT algorithms for many parameterized problems, such as
Vertex Cover. In view of this, we can “renormalize” and define the problem:
k log n Vertex Cover
Input: A graph G on n vertices and an integer k; Parameter: k; Question:
Does G have a vertex cover of size at most k logn?

The FPT algorithm for the original Vertex Cover problem, parameterized
by the number of vertices in the vertex cover, allows us to place this new problem
in XP . It now makes sense to ask whether the k log n Vertex Cover problem
is also in FPT — or is it parametrically intractable? It turns out that k log n
Vertex Cover is M [1]-complete.
The miniaturization route to M [1].
We certainly know an algorithm to solve n-variable 3SAT in time O(2n). Con-
sider the following parameterized problem.
Mini-3SAT
Input: Positive integers k and n in unary, and a 3SAT expression E having at
most k log n variables; Parameter: k; Question: Is E satisfiable?

Using our exponential time algorithm for 3SAT, Mini-3SAT is in XP and we
can wonder where it belongs — is it in FPT or is it parametrically intractable?
This problem also turns out to be complete for M [1].

Dozens of renormalized FPT problems and miniaturized arbitrary problems
are now known to be M [1]-complete. However, what is known is quite problem-
specific. For example, one might expect Mini-Max Leaf to be M [1]-complete,
but all that is known presently is that it is M [1]-hard. It is not known to be
W [1]-hard, nor is it known to belong to W [1].

The following theorem would be interpreted by most people as indicating
that probably FPT 6= M [1]. (The theorem is essentially due to Cai and Juedes
[CJ01], making use of a result of Impagliazzo, Paturi and Zane [IPZ98].)

Theorem 2. FPT = M [1] if and only if n-variable 3SAT can be solved in time
2o(n).

M [1] supports convenient although unusual combinatorics. For example, one
of the problems that is M [1]-complete is the miniature of the Independent Set
problem defined as follows.
Mini-Independent Set
Input: Positive integers k and n in unary, a positive integer r ≤ n, and a graph
G having at most k log n vertices.

14



Parameter: k
Question: Does G have an independent set of size at least r?

Theorem 3. There is an FPT reduction from Mini-Independent Set to ordi-
nary parameterized Independent Set (parameterized by the number of vertices
in the independent set).

Proof. Let G = (V, E) be the miniature, for which we wish to determine whether
G has an independent set of size r. Here, of course, |V | ≤ k logn and we may
regard the vertices of G as organized in k blocks V1, ..., Vk of size log n. We
now employ a simple but useful counting trick that can be used when reducing
miniatures to “normal” parameterized problems. Our reduction is a Turing re-
duction, with one branch for each possible way of writing r as a sum of k terms,
r = r1 + · · · + rk, where each ri is bounded by logn. The reader can verify
that (log n)k is an FPT function, and thus that there are an allowed number of
branches. A branch represents a commitment to choose ri vertices from block Vi

(for each i) to be in the independent set.
We now produce (for a given branch of the Turing reduction) a graph G′

that has an independent set of size k if and only if the miniature G has an
independent set of size r, distributed as indicated by the commitment made
on that branch. The graph G′ consists of k cliques, together with some edges
between these cliques. The ith clique consists of vertices in 1:1 correspondence
with the subsets of Vi of size ri. An edge connects a vertex x in the ith clique
and a vertex y in the jth clique if and only if there is a vertex u in the subset
Sx ⊆ Vi represented by x, and a vertex v in the subset Sy ⊆ Vj represented by
y, such that uv ∈ E. Verification is straightforward.

The theorem above shows that M [1] is contained in W [1].
Cai and Juedes [CJ01] proved the following, opening up a broad program of

studying the optimality of FPT algorithms.

Theorem 4. If FPT 6= M [1] then there cannot be an FPT algorithm for the
general Vertex Cover problem with a parameter function of the form f(k) =
2o(k), and there cannot be an FPT algorithm for the Planar Vertex Cover

problem with a parameter function of the form f(k) = 2o(
√

k).

It has previously been known that Planar Dominating Set, parameter-
ized by the number n of vertices in the graph can be solved optimally in time
O∗(2O(

√
n)) by using the Lipton-Tarjan Planar Separator Theorem. Combining

the lower bound theorem of Cai-Juedes with the linear kernelization result of
Alber et al. [AFN02] shows that this cannot be improved to O∗(2o(

√
n)) unless

FPT = M [1].

2.4 An Example of a W [1]-hardness Reduction

We take as our example, how parameterized complexity can be used to study
the complexity of approximation. Approximation immediately concerns a fun-
damental parameter: k = 1/ε, the goodness of the approximation.
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To illustrate the issue, consider the following more-or-less random sample of
recent PTAS results:

– The PTAS for the Euclidean TSP due to Arora [Ar96] has a running time
of around O(n3000/ε). Thus for a 20% error, we have a “polynomial-time”
algorithm that runs in time O(n15000).

– The PTAS for the Multiple Knapsack problem due to Chekuri and Khanna
[CK00] has a running time of O(n12(log(1/ε)/ε8)). Thus for a 20% error we have
a polynomial-time algorithm that runs in time O(n9375000).

– The PTAS for the Minimum Cost Routing Spanning Tree problem due
to Wu, Lancia, Banfna, Chao, Ravi and Tang [WLBCRT98] has a running
time of O(n2d2/εe−2). For a 20% error, we thus have a running time of O(n18).

– The PTAS for the Unbounded Batch Scheduling problem due to Deng,
Feng, Zhang and Zhu [DFZZ01] has a running time of O(n5 log1+ε(1+(1/ε))).
Thus for a 20% error we have an O(n50) polynomial-time algorithm.

– The PTAS for Two-Vehicle Scheduling on a Path due to Karuno and
Nagamochi [KN01] has a running time of O(n8(1+(2/ε))); thus O(n88) for a
20% error.

– The PTAS for the Maximum Subforest Problem due to Shamir and
Tsur [ST98] has a running time of O(n221/ε

−1). For a 20% error we thus
have a “polynomial” running time of O(n958267391).

– The PTAS for the Maximum Indendent Set problem on geometric graphs
due to Erlebach, Jansen and Seidel [EJS01] has a running time of
O(n(4/π)(1/ε2+2)2(1/ε2+1)2). Thus for a 20% error we have a running time of
O(n532804).

– The PTAS for the Class-Constrained Packing Problem due to Shachnai
and Tamir [ST00] has a running time (for 3 colors) of O(n64/ε+(log(1/ε)/ε8)).
Thus for a 20% error (for 3 colors) we have a running time of O(n1021570).

– The PTAS for the problem of Base Station Positioning in UMTS Net-
works due to Galota, Glasser, Reith and Vollmer [GGRV01] has a running
time of O(n25/ε2), and thus O(n627) time for a 20% error.

– The PTAS for the General Multiprocessor Job Scheduling Problem
due to Chen and Miranda [CM99] runs in time O(n(3mm!)(m/ε)+1

) for m ma-
chines. Thus for 4 machines with a 20% error we have an algorithm that runs
in time O(n100000000000000000000000000000000000000000000000000000000000000000000)
or so.

Since polynomial-time algorithms with exponent greater than 3 are generally
not very practical, the following question would seem to be important.

Can we get the k = 1/ε out of the exponent?

The following definition captures the essential issue.

Definition 7. An optimization problem Π has an efficient P -time approxima-
tion scheme (EPTAS) if it can be approximated to a goodness of (1+ε) of optimal
in time f(k)nc where c is a constant and k = 1/ε.
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In 1997, Arora gave an EPTAS for the Euclidean TSP [Ar97].
The following easy but important connection between parameterized com-

plexity and approximation was first proved by Bazgan [Baz95,CT97].

Theorem 5. Suppose that Πopt is an optimization problem, and that Πparam

is the corresponding parameterized problem, where the parameter is the value of
an optimal solution. Then Πparam is fixed-parameter tractable if Πopt has an
efficient PTAS.

Applying Bazgan’s Theorem is not necessarily difficult — we will sketch here
a recent example. Khanna and Motwani introduced three planar logic problems
in an interesting effort to give a general explanation of PTAS-approximability.
Their suggestion is that “hidden planar structure” in the logic of an optimization
problem is what allows PTASs to be developed [KM96]. They gave examples of
optimization problems known to have PTASs, problems having nothing to do
with graphs, that could nevertheless be reduced to these planar logic problems.
The PTASs for the planar logic problems thus “explain” the PTASs for these
other problems. Here is one of their three general planar logic optimization prob-
lems.
Planar TMIN
Input: A collection of Boolean formulas in sum-of-products form, with all literals
positive, where the associated bipartite graph is planar (this graph has a vertex
for each formula and a vertex for each variable, and an edge between two such
vertices if the variable occurs in the formula).
Output: A truth assignment of minimum weight (i.e., a minimum number of
variables set to true) that satisfies all the formulas.

The following theorem is from joint work with Cai, Juedes and Rosamond
[CFJR01].

Theorem 6. Planar TMIN is hard for W [1] and therefore does not have an
EPTAS unless FPT = W [1].

Proof. We show that Clique is parameterized reducible to Planar TMIN
with the parameter being the weight of a truth assignment. Since Clique is
W[1]-complete, it will follow that the parameterized form of Planar TMIN is
W[1]-hard.

To begin, let 〈G, k〉 be an instance of Clique. Assume that G has n vertices.
From G and k, we will construct a collection C of FOFs (sum-of-products for-
mulas) over f(k) blocks of n variables. C will contain at most 2f(k) FOFs and
the incidence graph of C will be planar. Moreover, each minterm in each FOF
will contain at most 4 variables. The collection C is constructed so that G has
a clique of size k if and only if C has a weight f(k) satisfying assignment with
exactly one variable set to true in each block of n variables. Here we have that
f(k) = O(k4).

To maintain planarity in the incidence graph for C, we ensure that each block
of n variables appears in at most 2 FOFs. If this condition is maintained, then
we can draw each block of n variables as follows.
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We describe the construction in two stages. In the first stage, we use k blocks
of n variables and a collection C′ of k(k−1)/2+k FOFs. In a weight k satisfying
assignment for C′, exactly one variable vi, j in each block of variables bi =
[vi,1, . . . , vi,n] will be set to true. We interpret this event as “vertex j is the ith
vertex in the clique of size k.” The k(k−1)/2+k FOFs are described as follows.

For each 1 ≤ i ≤ k, let fi be the FOF
n∨

j=1

vi,j. This FOF ensures that at least

one variable in bi is set to true. For each pair 1 ≤ i < j ≤ k, let fi,j be the FOF∨
(u,v)∈E

vi,uvj,v. Each FOF fi,j ensures that there is an edge in G between the

ith vertex the clique and the jth vertex in the clique.

It is somewhat straightforward to show that C′ = {f1, . . . , fk, f1,2, . . . , fk−1,k}
has a weight k satisfying assignment if and only if G has a clique of size k. To see
this, notice that any weight k satisfying assignment for C′ must satisfy exactly
1 variable in each block bi. Each first order formula fi,j ensures that there is
an edge between the ith vertex in the potential clique and the jth vertex in the
potential clique. Notice also that, since we assume that G does not contain edges
of the form (u, u), the FOF fi,j also ensures that the ith vertex in the potential
clique is not the jth vertex in the potential clique. This completes the first stage.

The incidence graph for the collection C′ in the first stage is almost certainly
not planar. In the second stage, we achieve planarity by removing crossovers in
incidence graph for C′. Here we use two types of widgets to remove crossovers
while keeping the number of variables per minterm bounded by 4. The first
widget Ak consists of k + k − 3 blocks of n variables and k − 2 FOFs. This
widget consists of k−3 internal and k external blocks of variables. Each external
block ei = [ei,1, . . . , ei,n] of variables is connected to exactly one FOF inside
the widget. Each internal block ij = [ij,1, . . . , ej,n] is connected to exactly two
FOFs inside the widget. The k − 2 FOFs are given as follows. The FOF fa,1

is
n∨

j=1

e1,je2,ji1,j. For each 2 ≤ l ≤ k − 3, the FOF fa,l =
∨n

j=1 il−1,jel+1,j il,j .

Finally, fa,k−2 =
n∨

j=1
ik−3,jek−1,jek,j. These k− 2 FOFs ensure that the settings

of variables in each block is the same if there is a weight 2k − 3 satisfying
assignment to the 2k − 3 blocks of n variables.

The widget Ak can be drawn as follows.
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Since each internal block is connected to exactly two FOFs, the incidence graph
for this widget can be drawn on the plane without crossing any edges.

The second widget removes crossover edges from the first stage of the con-
struction. In the first stage, crossovers can occur in the incidence graphs because
two FOFs may cross from one block to another. To eliminate this, consider each
edge i, j in Kk with i < j as a directed edge from i to j. In the construction,
we send a copy of block i to block j. At each crossover point from the direction
of block u = [u1, . . . , un] and v = [v1, . . . , vn], insert a widget B that introduces
2 new blocks of n variables u1 = [u11 . . .u1n ] and v1 = [v11 . . . v1n ] and a FOF

fB =
n∨

j=1

n∨
l=1

uju1jvlv1l . The FOF fB ensures that u1 and v1 are copies of u and

v. Moreover, notice that the incidence graph for the widget B is also planar.
To complete the construction, we replace each of the original k blocks of n

variables from the first stage with a copy of the widget Ak−1. At each crossover
point in the graph, we introduce a copy of widget B. Finally, for each directed
edge between blocks (i, j), we insert the original FOF fi,j between the last widget
B and the destination widget Ak−1. Since one of the new blocks of variables
created by the widget B is a copy of block i, the effect of the FOF fi,j in this
new collections is the same as before.

The following diagram shows the full construction when k = 5.

f1;2

f1;4 f2;4

f3;4

f2;3

f1;5

f2;5

f3;5

f4;5

B

B

B

BB

A5

A5 A5

A5A5

f1;3

f1 f2

f3

f4

f5

Since each the incidence graph of each widget in this drawing is planar, the entire
collection C of first order formulas has a planar incidence graph.

Now, if we assume that there are c(k) = O(k4) crossover points in standard
drawing of Kk, then our collection has c(k) B widgets. Since each B widget
introduces 2 new blocks of n variables, this gives 2c(k) new blocks. Since we
have k Ak−1 widgets, each of which has 2(k − 1) − 3 = 2k − 5 blocks of n
variables, this gives an additional k(2k−5) blocks. So, in total, our construction
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has f(k) = 2c(k) + 2k2 − 5k = O(k4) blocks of n variables. Note also that there
are g(k) = k(k − 1)/2 + k(k − 2) + c(k) = O(k4) FOFs in the collection C.

As shown in our construction C has a weight f(k) satisfying assignment (i.e.,
each block has exactly one variable set to true) if and only if the original graph G
has a clique of size k. Since the incidence graph of C is planar and each minterm
in each FOF contains at most four variables, it follows that this construction is
a parameterized reduction as claimed. ut

In a similar manner the other two planar logic problems defined by Khanna
and Motwani can also be shown to be W [1]-hard.

3 Recommended Books and Articles

Parameterized Complexity – R. Downey and M. Fellows, Springer, 1999.
Parameterized Complexity Theory – J. Flum and M. Grohe, Springer, 2006.
Invitation to Fixed Parameter Algorithms – R. Niedermeier, Oxford Univ. Press,
2006.
The Computer Journal, 2008, Numbers 1 and 3 – a double special issue of surveys
of various aspects and application areas of parameterized complexity.
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